Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Inherit Metab Dis ; 42(5): 998-1007, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31077402

RESUMO

Patients with phosphoglucomutase (PGM1) deficiency, a congenital disorder of glycosylation (CDG) suffer from multiple disease phenotypes. Midline cleft defects are present at birth. Overtime, additional clinical phenotypes, which include severe hypoglycemia, hepatopathy, growth retardation, hormonal deficiencies, hemostatic anomalies, frequently lethal, early-onset of dilated cardiomyopathy and myopathy emerge, reflecting the central roles of the enzyme in (glycogen) metabolism and glycosylation. To delineate the pathophysiology of the tissue-specific disease phenotypes, we constructed a constitutive Pgm2 (mouse ortholog of human PGM1)-knockout (KO) mouse model using CRISPR-Cas9 technology. After multiple crosses between heterozygous parents, we were unable to identify homozygous life births in 78 newborn pups (P = 1.59897E-06), suggesting an embryonic lethality phenotype in the homozygotes. Ultrasound studies of the course of pregnancy confirmed Pgm2-deficient pups succumb before E9.5. Oral galactose supplementation (9 mg/mL drinking water) did not rescue the lethality. Biochemical studies of tissues and skin fibroblasts harvested from heterozygous animals confirmed reduced Pgm2 enzyme activity and abundance, but no change in glycogen content. However, glycomics analyses in serum revealed an abnormal glycosylation pattern in the Pgm2+/- animals, similar to that seen in PGM1-CDG.


Assuntos
Defeitos Congênitos da Glicosilação/tratamento farmacológico , Galactose/administração & dosagem , Genes Letais , Fosfoglucomutase/deficiência , Animais , Animais Recém-Nascidos , Defeitos Congênitos da Glicosilação/complicações , Defeitos Congênitos da Glicosilação/enzimologia , Feminino , Glicosilação , Heterozigoto , Homozigoto , Hipoglicemia/complicações , Masculino , Camundongos , Camundongos Knockout , Doenças Musculares/complicações , Doenças Musculares/patologia , Fenótipo
2.
Am J Hum Genet ; 104(5): 835-846, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982613

RESUMO

Phosphoglucomutase 1 (PGM1) encodes the metabolic enzyme that interconverts glucose-6-P and glucose-1-P. Mutations in PGM1 cause impairment in glycogen metabolism and glycosylation, the latter manifesting as a congenital disorder of glycosylation (CDG). This unique metabolic defect leads to abnormal N-glycan synthesis in the endoplasmic reticulum (ER) and the Golgi apparatus (GA). On the basis of the decreased galactosylation in glycan chains, galactose was administered to individuals with PGM1-CDG and was shown to markedly reverse most disease-related laboratory abnormalities. The disease and treatment mechanisms, however, have remained largely elusive. Here, we confirm the clinical benefit of galactose supplementation in PGM1-CDG-affected individuals and obtain significant insights into the functional and biochemical regulation of glycosylation. We report here that, by using tracer-based metabolomics, we found that galactose treatment of PGM1-CDG fibroblasts metabolically re-wires their sugar metabolism, and as such replenishes the depleted levels of galactose-1-P, as well as the levels of UDP-glucose and UDP-galactose, the nucleotide sugars that are required for ER- and GA-linked glycosylation, respectively. To this end, we further show that the galactose in UDP-galactose is incorporated into mature, de novo glycans. Our results also allude to the potential of monosaccharide therapy for several other CDG.


Assuntos
Defeitos Congênitos da Glicosilação/metabolismo , Fibroblastos/metabolismo , Galactose/administração & dosagem , Fosfoglucomutase/deficiência , Uridina Difosfato Galactose/metabolismo , Uridina Difosfato Glucose/metabolismo , Células Cultivadas , Estudos de Coortes , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Glicosilação , Humanos
4.
Mol Omics ; 14(6): 437-449, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30387490

RESUMO

Abiotic stress exposure of plants induces metabolic reprogramming which is tightly regulated by signalling cascades connecting transcriptional with translational and metabolic regulation. Complexity of such interconnected metabolic networks impedes the functional understanding of molecular plant stress response compromising the design of breeding strategies and biotechnological processes. Thus, defining a molecular network to enable the prediction of a plant's stress mode will improve the understanding of stress responsive biochemical regulation and will yield novel molecular targets for technological application. Arabidopsis wild type plants and two mutant lines with deficiency in sucrose or starch metabolism were grown under ambient and combined cold/high light stress conditions. Stress-induced dynamics of the primary metabolome and the proteome were quantified by mass spectrometry. Wild type data were used to train a machine learning algorithm to classify mutant lines under control and stress conditions. Multivariate analysis and classification identified a module consisting of 23 proteins enabling the reliable prediction of combined temperature/high light stress conditions. 18 of these 23 proteins displayed putative protein-protein interactions connecting transcriptional regulation with regulation of primary and secondary metabolism. The identified stress-responsive core module supports prediction of complex biochemical regulation under changing environmental conditions.


Assuntos
Arabidopsis/metabolismo , Aprendizado de Máquina , Metabolômica , Estresse Fisiológico , Análise de Variância , Arabidopsis/genética , Linhagem Celular , Clorofila/metabolismo , Biologia Computacional/métodos , Metabolômica/métodos , Análise Multivariada , Mutação , Fosfoglucomutase/deficiência , Sacarose/metabolismo
5.
PLoS Biol ; 16(10): e2006483, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30335765

RESUMO

Glycogen metabolism commonly altered in cancer is just beginning to be understood. Phosphoglucomutase 1 (PGM1), the first enzyme in glycogenesis that catalyzes the reversible conversion between glucose 1-phosphate (G-1-P) and glucose 6-phosphate (G-6-P), participates in both the breakdown and synthesis of glycogen. Here, we show that PGM1 is down-regulated in hepatocellular carcinoma (HCC), which is associated with the malignancy and poor prognosis of HCC. Decreased PGM1 expression obstructed glycogenesis pathway, which leads to the increased flow of glucose into glycolysis, thereby promoting tumor cell proliferation and HCC development. The loss of forkhead box protein J2 (FOXJ2), at least partly due to low genomic copy number in HCC, releases cellular nucleic acid-binding protein (CNBP), a nucleic acid chaperon, to bind to and promote G-quadruplex formation in PGM1 promoter and therefore decreases PGM1 expression. In addition, integrated analyses of PGM1 and FOXJ2 expression provide a better prediction for the malignance and prognosis of HCC. This study establishes a tumor-suppressive role of PGM1 by regulating glucose trafficking and uncovers a novel regulatory mechanism of PGM1 expression.


Assuntos
Carcinoma Hepatocelular/metabolismo , Glucose/metabolismo , Neoplasias Hepáticas/metabolismo , Fosfoglucomutase/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Regulação para Baixo , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glicólise , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Fosfoglucomutase/deficiência , Fosfoglucomutase/genética , Prognóstico , Regiões Promotoras Genéticas , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
6.
Mol Genet Metab ; 125(3): 200-204, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30262252

RESUMO

PGM1, the enzyme responsible for the reversible inter-conversion of glucose-1-P and glucose-6-P, is also involved in glycosylation, leading to a wide range of clinical manifestations, such as congenital malformations, hypoglycemia, hormonal dysregulation, myopathy, hepatopathy, and cardiomyopathy. So far, PGM1 deficiency has not been associated with central nervous system involvement or intellectual disability. Seizures and neurologic involvement in PGM1-CDG were thought to be a consequence of hypoglycemia. We reviewed all reported PGM1 deficient patients for the presence of the central nervous system involvement, their treatment and disease history. We detected 17 patients out of the 41 reported PGM1-CDG cases with significant neurologic involvement. Several of these patients had no severe hypoglycemic episodes, or were adequately treated for hypoglycemia with no recurrent episodes of low blood sugars, while one patient had no reported hypoglycemic episodes. We suggest that neurological symptoms are frequent in PGM1-CDG and could present even in the absence of hypoglycemia. The central nervous system should be assessed early on during the diagnostic process to optimize outcome in patients with PGM1-CDG.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Fosfoglucomutase/genética , Convulsões/genética , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/patologia , Glicosilação , Humanos , Hipoglicemia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Fosfoglucomutase/deficiência , Convulsões/fisiopatologia
7.
Mamm Genome ; 29(7-8): 603-617, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30094507

RESUMO

Spectacular progress has been made in the characterization of human hyper-IgE syndrome (HIES) over the last 50 years. HIES is a primary immunodeficiency defined as an association of atopy in a context of very high serum IgE levels, characteristic bacterial and fungal diseases, low-level clinical and biological inflammation, and various non-hematopoietic developmental manifestations. Somewhat arbitrarily, three disorders were successively put forward as the underlying cause of HIES: autosomal dominant (AD) STAT3 deficiency, the only disorder corresponding to the original definition of HIES, and autosomal recessive (AR) DOCK8 and PGM3 deficiencies, in which atopy and high serum IgE levels occur in a context of manifestations not seen in patients with typical HIES. Indeed, these three disorders disrupt different molecular pathways, affect different cell types, and underlie different clinical phenotypes. Surprisingly, several other inherited inborn errors of immunity in which serum IgE levels are high, sometimes almost as high as those in HIES patients, are not considered to belong to the HIES group of diseases. Studies of HIES have been further complicated by the lack of a high serum IgE phenotype in all mouse models of the disease other than two Stat3 mutant strains. The study of infections in mutant mice has helped elucidate only some forms of HIES and infection. Mouse models of these conditions have also been used to study non-hematopoietic phenotypes for STAT3 deficiency, tissue-specific immunity for DOCK8 deficiency, and cell lineage maturation for PGM3 deficiency. We review here the history of the field of HIES since the first clinical description of this condition in 1966, together with the three disorders commonly referred to as HIES, focusing, in particular, on their mouse models. We propose the restriction of the term "HIES" to patients with an AD STAT3-deficiency phenotype, including the most recently described AR ZNF341 deficiency, thus excluding AR DOCK8 and PGM3 deficiencies from the definition of this disease.


Assuntos
Suscetibilidade a Doenças , Síndrome de Job/etiologia , Síndrome de Job/metabolismo , Animais , Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Biomarcadores , Modelos Animais de Doenças , Predisposição Genética para Doença , Fatores de Troca do Nucleotídeo Guanina/deficiência , Humanos , Imunoglobulina E/imunologia , Síndrome de Job/diagnóstico , Fenótipo , Fosfoglucomutase/deficiência , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
8.
Mol Immunol ; 90: 57-63, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28704707

RESUMO

Phosphoglucomutase 3 (PGM3) protein catalyzes the conversion of N-acetyl-d-glucosamine-6-phosphate (GlcNAc-6-P) to N-acetyl-d-glucosamine-1-phosphate (GlcNAc-1-P), which is required for the synthesis of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) an important precursor for protein glycosylation. Mutations in PGM3 gene have been recently shown to underlie a new congenital disorder of glycosylation often associated to elevated IgE. Herein, we report twelve PGM3 deficient patients. They belong to three highly consanguineous families, originating from a rural district in the west central Tunisia. The patient's clinical phenotype is characterized by severe respiratory and cutaneous infections as well as developmental delay and severe mental retardation. Fourteen patients died in early infancy before diagnosis supporting the severity of the clinical phenotype. Laboratory findings revealed elevated IgE, CD4 lymphopenia and impaired T cell proliferation in most patients. Genetic analysis showed the presence, of a unique homozygous mutation (p.Glu340del) in PGM3 gene leading to reduced PGM3 abundance. Segregating analysis using fifteen polymorphic markers overlapping PGM3 gene showed that all patients inherited a common homozygous haplotype encompassing 10-Mb on chromosome 6. The founder mutational event was estimated to have occurred approximately 100 years ago. To date, (p.Glu340del) mutation represents the first founder mutation identified in PGM3 gene. These findings will facilitate the development of preventive approaches through genetic counselling and prenatal diagnosis in the affected families.


Assuntos
Predisposição Genética para Doença/genética , Fosfoglucomutase/deficiência , Fosfoglucomutase/genética , Adolescente , Criança , Pré-Escolar , Consanguinidade , Feminino , Glicosilação , Haplótipos/genética , Homozigoto , Humanos , Masculino , Linhagem , Tunísia
10.
Acta Clin Belg ; 71(6): 435-437, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27351072

RESUMO

OBJECTIVE AND IMPORTANCE: Phosphoglucomutase 1 (PGM1) deficiency, first described as a glycogenosis (type XIV) is also a congenital disorder of glycosylation (CDG). We want to illustrate the wide clinical spectrum of PGM1 deficiency and in particular the associated disturbance in glucose metabolism and the endocrine dysfunction. Treatment with d-galactose is experimental. CASE PRESENTATION: PGM1 deficiency was diagnosed in an 8-year-old boy, who was referred because of an unexplained complex syndrome, including recurrent hypoglycaemia and low IGF-1 mediated growth failure. CONCLUSION: The timely diagnosis of this disorder is particularly important, because d-galactose treatment can improve the latter symptoms.


Assuntos
Insuficiência de Crescimento/complicações , Doença de Depósito de Glicogênio/diagnóstico por imagem , Fator de Crescimento Insulin-Like I/metabolismo , Fosfoglucomutase/deficiência , Diagnóstico por Imagem , Insuficiência de Crescimento/sangue , Doença de Depósito de Glicogênio/enzimologia , Doença de Depósito de Glicogênio/etiologia , Humanos , Recém-Nascido , Masculino , Fosfoglucomutase/sangue
11.
J Pediatr ; 175: 130-136.e8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27206562

RESUMO

OBJECTIVE: To define phenotypic groups and identify predictors of disease severity in patients with phosphoglucomutase-1 deficiency (PGM1-CDG). STUDY DESIGN: We evaluated 27 patients with PGM1-CDG who were divided into 3 phenotypic groups, and group assignment was validated by a scoring system, the Tulane PGM1-CDG Rating Scale (TPCRS). This scale evaluates measurable clinical features of PGM1-CDG. We examined the relationship between genotype, enzyme activity, and TPCRS score by using regression analysis. Associations between the most common clinical features and disease severity were evaluated by principal component analysis. RESULTS: We found a statistically significant stratification of the TPCRS scores among the phenotypic groups (P < .001). Regression analysis showed that there is no significant correlation between genotype, enzyme activity, and TPCRS score. Principal component analysis identified 5 variables that contributed to 54% variance in the cohort and are predictive of disease severity: congenital malformation, cardiac involvement, endocrine deficiency, myopathy, and growth. CONCLUSIONS: We established a scoring algorithm to reliably evaluate disease severity in patients with PGM1-CDG on the basis of their clinical history and presentation. We also identified 5 clinical features that are predictors of disease severity; 2 of these features can be evaluated by physical examination, without the need for specific diagnostic testing and thus allow for rapid assessment and initiation of therapy.


Assuntos
Doença de Depósito de Glicogênio/diagnóstico , Fenótipo , Índice de Gravidade de Doença , Adolescente , Adulto , Algoritmos , Criança , Pré-Escolar , Feminino , Marcadores Genéticos , Genótipo , Doença de Depósito de Glicogênio/enzimologia , Doença de Depósito de Glicogênio/genética , Humanos , Masculino , Mutação , Fosfoglucomutase/deficiência , Fosfoglucomutase/genética , Exame Físico , Análise de Componente Principal , Análise de Regressão , Adulto Jovem
12.
J Ind Microbiol Biotechnol ; 42(6): 939-48, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25877163

RESUMO

Dough-leavening ability is one of the main aspects considered when selecting a baker's yeast strain for baking industry. Generally, modification of maltose metabolic pathway and known regulatory networks of maltose metabolism were used to increase maltose metabolism to improve leavening ability in lean dough. In this study, we focus on the effects of PGM2 (encoding for the phosphoglucomutase) and SNR84 (encoding for the H/ACA snoRNA) that are not directly related to both the maltose metabolic pathway and known regulatory networks of maltose metabolism on the leavening ability of baker's yeast in lean dough. The results show that the modifications on PGM2 and/or SNR84 are effective ways in improving leavening ability of baker's yeast in lean dough. Deletion of PGM2 decreased cellular glucose-1-phosphate and overexpression of SNR84 increased the maltose permease activity. These changes resulted in 11, 19 and 21% increases of the leavening ability for PGM2 deletion, SNR84 overexpression and SNR84 overexpression combining deleted PGM2, respectively.


Assuntos
Pão/microbiologia , Metabolismo dos Carboidratos/genética , Maltose/metabolismo , Fosfoglucomutase/deficiência , RNA Nucleolar Pequeno/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Indústria Alimentícia/métodos , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Glucofosfatos/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Fosfoglucomutase/genética , Fosfoglucomutase/metabolismo , Saccharomyces cerevisiae/enzimologia
13.
J Inherit Metab Dis ; 38(2): 243-56, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25168163

RESUMO

Recent studies have identified phosphoglucomutase 1 (PGM1) deficiency as an inherited metabolic disorder in humans. PGM1 deficiency is classified as both a muscle glycogenosis (type XIV) and a congenital disorder of glycosylation of types I and II. Affected patients show multiple disease phenotypes, reflecting the central role of the enzyme in glucose homeostasis, where it catalyzes the interconversion of glucose 1-phosphate and glucose 6-phosphate. The influence of PGM1 deficiency on protein glycosylation patterns is also widespread, affecting both biosynthesis and processing of glycans and their precursors. To date, 21 different mutations involved in PGM1 deficiency have been identified, including 13 missense mutations resulting in single amino acid changes. Growing clinical interest in PGM1 deficiency prompts a review of the molecular context of these mutations in the three-dimensional structure of the protein. Here the known crystal structure of PGM from rabbit (97 % sequence identity to human) is used to analyze the mutations associated with disease and find that many map to regions with clear significance to enzyme function. In particular, amino acids in and around the active site cleft are frequently involved, including regions responsible for catalysis, binding of the metal ion required for activity, and interactions with the phosphosugar substrate. Several of the known mutations, however, are distant from the active site and appear to manifest their effects indirectly. An understanding of how the different mutations that cause PGM1 deficiency affect enzyme structure and function is foundational to providing clinical prognosis and the development of effective treatment strategies.


Assuntos
Doença de Depósito de Glicogênio/genética , Mutação de Sentido Incorreto , Fosfoglucomutase/genética , Sequência de Aminoácidos , Animais , Domínio Catalítico , Predisposição Genética para Doença , Doença de Depósito de Glicogênio/diagnóstico , Doença de Depósito de Glicogênio/enzimologia , Glicosilação , Hereditariedade , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fenótipo , Fosfoglucomutase/química , Fosfoglucomutase/deficiência , Conformação Proteica , Processamento de Proteína Pós-Traducional , Coelhos , Relação Estrutura-Atividade , Especificidade por Substrato
14.
Am J Med Genet A ; 167A(12): 3139-43, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26768186

RESUMO

Phosphoglucomutase 1 (PGM1, EC 5.4.2.2) plays a critical role in glucose homeostasis and is also essential for protein N-glycosylation. The main clinical manifestations of PGM1 deficiency (MIM 614921) reported in 19 patients from different ethnic backgrounds include the following: cleft uvula/palate, Pierre Robin sequence, muscle weakness, dilated cardiomyopathy, growth retardation, elevated serum transaminases, hypoglycemia, and various endocrine abnormalities. We report the variable clinical picture of seven patients with PGM1 deficiency from a consanguineous family. Medical records of the patients were reviewed for clinical details and endocrine evaluation. Whole exome sequencing (WES) was performed. Seven patients aged 2-29 years were included, one patient died at 13 years old when getting off the school bus. All patients have an abnormal palatine structure (cleft palate, bifid uvula) and elevated serum transaminases, 4/7 have short stature (<-2 SDS) and one was diagnosed with growth hormone deficiency. Recurrent episodes of ketotic hypoglycemia were present in 6/7 patients. In two patients, hypoglycemic episodes have spontaneously resolved later on. Four out of seven patients have deteriorating adrenal function with abnormally low cortisol and ACTH levels during hypoglycemia and subnormal response of cortisol to low dose ACTH test . Serum electrolytes were within normal range. Hydrocortisone replacement therapy improved, but not entirely eliminated hypoglycemic episodes. WES revealed a previously described homozygous mutation c.112A>T, p.Asn38Tyr in the PGM1 gene. The clinical picture of PGM1 deficiency is variable among patients with the same mutation and genetic background. ACTH deficiency should be considered in any PGM1 deficient patient with hypoglycemia.


Assuntos
Insuficiência Adrenal/genética , Doença de Depósito de Glicogênio/genética , Mutação/genética , Fosfoglucomutase/deficiência , Fosfoglucomutase/genética , Adolescente , Insuficiência Adrenal/diagnóstico , Adulto , Criança , Pré-Escolar , Feminino , Doença de Depósito de Glicogênio/diagnóstico , Humanos , Masculino , Linhagem , Fenótipo , Prognóstico , Adulto Jovem
15.
Curr Opin Pediatr ; 26(6): 697-703, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25365149

RESUMO

PURPOSE OF REVIEW: The hyper-IgE syndromes have been recognized as a group of primary immunodeficiencies characterized by eczema, recurrent skin and lung infections, and elevated serum IgE. Recently, mutations in phosphoglucomutase 3 (encoding PGM3, which is involved in the protein glycosylation pathway) have been identified in autosomal recessive forms of hyper-IgE syndromes. RECENT FINDINGS: Autosomal recessive, hypomorphic PGM3 mutations cause a multisystem disorder, characterized by both a congenital glycosylation disease and a hyper-IgE syndrome. The reported mutations in PGM3 led to an impaired biosynthesis of UDP-GlcNAc and impaired tri-antennary and tetra-antennary N-glycan structures. Laboratory results in patients showed eosinophilia, a T-cell proliferation defect, and a reversed CD4/CD8 ratio. The impaired glycosylation in PGM3-mutant patients will not only affect proteins involved in the immune system, and thus causes a multisystem phenotype. SUMMARY: The identification of hyper-IgE syndromes-associated mutations in PGM3 provides the basis for future studies on the pathophysiology and the molecular mechanisms of eczema, IgE dysregulation, and increased susceptibility to infections.


Assuntos
Imunoglobulina E/genética , Síndrome de Job/genética , Fosfoglucomutase/deficiência , Fosfoglucomutase/genética , Criança , Predisposição Genética para Doença/genética , Humanos
16.
Mol Genet Metab ; 112(4): 275-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24997537

RESUMO

We recently redefined phosphoglucomutase-1 deficiency not only as an enzyme defect, involved in normal glycogen metabolism, but also an inborn error of protein glycosylation. Phosphoglucomutase-1 is a key enzyme in glycolysis and glycogenesis by catalyzing in the bidirectional transfer of phosphate from position 1 to 6 on glucose. Glucose-1-P and UDP-glucose are closely linked to galactose metabolism. Normal PGM1 activity is important for effective glycolysis during fasting. Activated glucose and galactose are essential for normal protein glycosylation. The complex defect involving abnormal concentrations of activated sugars leads to hypoglycemia and two major phenotypic presentations, one with primary muscle involvement and the other with severe multisystem disease. The multisystem phenotype includes growth delay and malformations, like cleft palate or uvula, and liver, endocrine and heart function with possible cardiomyopathy. The patients have normal intelligence. Decreased transferrin galactosylation is a characteristic finding on mass spectrometry. Previous in vitro studies in patient fibroblasts showed an improvement of glycosylation on galactose supplements. Four patients with PGM1 deficiency have been trialed on d-galactose (compassionate use), and showed improvement of serum transferrin hypoglycosylation. There was a parallel improvement of liver function, endocrine abnormalities and a decrease in the frequency of hypoglycemic episodes. No side effects have been observed. Galactose supplementation didn't seem to resolve all clinical symptoms. Adding complex carbohydrates showed an additional clinical amelioration. Based on the available clinical data we suggest to consider the use of 0.5-1g/kg/day d-galactose and maximum 50 g/day oral galactose therapy in PGM1-CDG. The existing data on galactose therapy have to be viewed as preliminary observations. A prospective multicenter trial is ongoing to evaluate the efficacy and optimal d-galactose dose of galactose supplementation.


Assuntos
Defeitos Congênitos da Glicosilação/tratamento farmacológico , Galactose/uso terapêutico , Fosfoglucomutase/deficiência , Defeitos Congênitos da Glicosilação/complicações , Defeitos Congênitos da Glicosilação/enzimologia , Humanos , Hipoglicemia/complicações , Doenças Musculares/complicações , Doenças Musculares/patologia , Fenótipo , Fosfoglucomutase/metabolismo
17.
Mol Microbiol ; 85(3): 513-34, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22676716

RESUMO

The enzymes phosphomannomutase (PMM), phospho-N-acetylglucosamine mutase (PAGM) and phosphoglucomutase (PGM) reversibly catalyse the transfer of phosphate between the C6 and C1 hydroxyl groups of mannose, N-acetylglucosamine and glucose respectively. Although genes for a candidate PMM and a PAGM enzymes have been found in the Trypanosoma brucei genome, there is, surprisingly, no candidate gene for PGM. The TbPMM and TbPAGM genes were cloned and expressed in Escherichia coli and the TbPMM enzyme was crystallized and its structure solved at 1.85 Å resolution. Antibodies to the recombinant proteins localized endogenous TbPMM to glycosomes in the bloodstream form of the parasite, while TbPAGM localized to both the cytosol and glycosomes. Both recombinant enzymes were able to interconvert glucose-phosphates, as well as acting on their own definitive substrates. Analysis of sugar nucleotide levels in parasites with TbPMM or TbPAGM knocked down by RNA interference (RNAi) suggests that, in vivo, PGM activity is catalysed by both enzymes. This is the first example in any organism of PGM activity being completely replaced in this way and it explains why, uniquely, T. brucei has been able to lose its PGM gene. The RNAi data for TbPMM also showed that this is an essential gene for parasite growth.


Assuntos
Fosfoglucomutase/deficiência , Fosfotransferases (Fosfomutases)/metabolismo , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Acetilglucosamina/análogos & derivados , Acetilglucosamina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Glucose-6-Fosfato/metabolismo , Glucofosfatos/metabolismo , Cinética , Manosefosfatos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fases de Leitura Aberta , Fosfotransferases (Fosfomutases)/química , Fosfotransferases (Fosfomutases)/genética , Conformação Proteica , Transporte Proteico , Interferência de RNA , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...